

Open source Terminal Investment Simulation

OpenTISim is a python package for the evaluation of investment decisions for terminals.

Welcome to OpenTISim documentation! Please check the contents below for information on installation, getting started and actual example code. If you want to dive straight into the code you can check out our GitHub [https://github.com/TUDelft-CITG/OpenTISim] page or the working examples presented in Jupyter Notebooks [https://github.com/TUDelft-CITG/OpenTISim-Notebooks].

Contents:

	Installation

	OpenTISim

	Contributing

	Credits

	History

Indices and tables

	Index

	Module Index

	Search Page

Installation

Stable release

To install OpenTISim, run this command in your terminal:

Use pip to install OpenTISim
pip install opentisim

This is the preferred method to install OpenTISim, as it will always install the most recent stable release.

If you do not pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for OpenTISim can be downloaded from the Github repo [https://github.com/TUDelft-CITG/OpenTNSim].

You can either clone the public repository:

Use git to clone OpenTISim
git clone git://github.com/TUDelft-CITG/OpenTISim

Or download the tarball [https://github.com/TUDelft-CITG/OpenTNSim/tarball/master]:

Use curl to obtain the tarball
curl -OL https://github.com/TUDelft-CITG/OpenTISim/tarball/master

Once you have a copy of the source, you can install it with:

Use python to install
python setup.py install

OpenTISim

This page lists all functions and classes available in the OpenTISim.model and OpenTISim.core modules. For examples on how to use these submodules please check out the Examples page, information on installing OpenTISim can be found on the Installation page.

Submodules

The main components are the Model module and the Core module. All of their components are listed below.

opentisim.agribulk_defaults module

Defaults for following objects:

	
	Quay_wall

	
	Berth

	
	Cyclic_Unloader

	Gantry crane

	Harbour crane

	Mobile crane

Continuous_Unloader

	Continuous screw

	
	Conveyor

	Hinterland conveyor

	Quay conveyor

	
	Storage

	Silo

	Warehouse

	
	Unloading_station

	Hinterland station

	
	Commodity

	Maize

	Soybean

	Wheat

	
	Vessel

	Handysize

	Handymax

	Panamax

	
	Labour

Default values are based on Claes 2018; Corbeau 2018; Daas 2018; Juha 2018;
Kranendonk 2018; Schutz 2018; Schuurmans 2018 and Verstegen 2018

opentisim.agribulk_mixins module

Basic properties mixins:

	identifiable_properties_mixin

	history_properties_mixin

	hascapex_properties_mixin

	hasopex_properties_mixin

	hasrevenue_properties_mixin

	hastriggers_properties_mixin

	quay_wall_properties_mixin

	berth_properties_mixin

	cyclic_properties_mixin

	continuous_properties_mixin

	conveyor_properties_mixin

	storage_properties_mixin

	unloading_station_properties_mixin

	commodity_properties_mixin

	vessel_properties_mixin

	labour_properties_mixin

	hasscenario_properties_mixin

	
class opentisim.agribulk_mixins.berth_properties_mixin(crane_type, max_cranes, delivery_time, *args, **kwargs)

	Bases: object

	
class opentisim.agribulk_mixins.commodity_properties_mixin(handling_fee, handysize_perc, handymax_perc, panamax_perc, *args, **kwargs)

	Bases: object

	
class opentisim.agribulk_mixins.continuous_properties_mixin(ownership, delivery_time, lifespan, unit_rate, mobilisation_perc, maintenance_perc, consumption, insurance_perc, crew, crane_type, peak_capacity, eff_fact, *args, **kwargs)

	Bases: object

	
class opentisim.agribulk_mixins.conveyor_properties_mixin(type, length, ownership, delivery_time, lifespan, unit_rate_factor, mobilisation, maintenance_perc, insurance_perc, consumption_constant, consumption_coefficient, crew, utilisation, capacity_steps, *args, **kwargs)

	Bases: object

	
class opentisim.agribulk_mixins.cyclic_properties_mixin(ownership, delivery_time, lifespan, unit_rate, mobilisation_perc, maintenance_perc, consumption, insurance_perc, crew, crane_type, lifting_capacity, hourly_cycles, eff_fact, *args, **kwargs)

	Bases: object

	
class opentisim.agribulk_mixins.energy_properties_mixin(price, *args, **kwargs)

	Bases: object

	
class opentisim.agribulk_mixins.hascapex_properties_mixin(capex=[], *args, **kwargs)

	Bases: object

Something has CAPEX

capex: list with cost to be applied from investment year

	
class opentisim.agribulk_mixins.hasopex_properties_mixin(labour=[], maintenance=[], energy=[], insurance=[], lease=[], demurrage=[], residual=[], *args, **kwargs)

	Bases: object

Something has OPEX

opex: list with cost to be applied from investment year

	
class opentisim.agribulk_mixins.hasrevenue_properties_mixin(renevue=[], *args, **kwargs)

	Bases: object

Something has Revenue

revenue: list with revenues to be applied from investment year

	
class opentisim.agribulk_mixins.hasscenario_properties_mixin(historic_data=[], scenario_data=[], *args, **kwargs)

	Bases: object

Something has a scenario

historic_data: observed demand
scenario_data: generated estimates of future demand

	
plot_demand(width=0.1, alpha=0.6, fontsize=20)

	generate a histogram of the demand data

	
scenario_random(startyear=2019, lifecycle=20, rate=1.02, mu=0.01, sigma=0.065)

	trend generated from random growth rate increments

	
class opentisim.agribulk_mixins.hastriggers_properties_mixin(triggers=[], *args, **kwargs)

	Bases: object

Something has InvestmentTriggers

triggers: list with revenues to be applied from investment year

	
class opentisim.agribulk_mixins.history_properties_mixin(year_purchase=[], year_online=[], *args, **kwargs)

	Bases: object

Something that has a purchase history

purchase_date: year in which the decision was made to add another element
online_date: year by which the elements starts to perform

	
class opentisim.agribulk_mixins.identifiable_properties_mixin(name=[], id=None, *args, **kwargs)

	Bases: object

Something that has a name and id

name: a name
id: a unique id generated with uuid

	
class opentisim.agribulk_mixins.labour_properties_mixin(international_salary, international_staff, local_salary, local_staff, operational_salary, shift_length, annual_shifts, *args, **kwargs)

	Bases: object

	
class opentisim.agribulk_mixins.quay_wall_properties_mixin(ownership, delivery_time, lifespan, mobilisation_min, mobilisation_perc, maintenance_perc, insurance_perc, freeboard, Gijt_constant_2, Gijt_constant, Gijt_coefficient, max_sinkage, wave_motion, safety_margin, *args, **kwargs)

	Bases: object

	
class opentisim.agribulk_mixins.storage_properties_mixin(type, ownership, delivery_time, lifespan, unit_rate, mobilisation_min, mobilisation_perc, maintenance_perc, crew, insurance_perc, storage_type, consumption, capacity, *args, **kwargs)

	Bases: object

	
class opentisim.agribulk_mixins.train_properties_mixin(wagon_payload, number_of_wagons, *args, **kwargs)

	Bases: object

	
class opentisim.agribulk_mixins.unloading_station_properties_mixin(ownership, delivery_time, lifespan, unit_rate, mobilisation, maintenance_perc, insurance_perc, consumption, crew, production, wagon_payload, number_of_wagons, prep_time, *args, **kwargs)

	Bases: object

	
class opentisim.agribulk_mixins.vessel_properties_mixin(type, call_size, LOA, draft, beam, max_cranes, all_turn_time, mooring_time, demurrage_rate, *args, **kwargs)

	Bases: object

opentisim.agribulk_objects module

Main generic object classes:

	
	Quay_wall

	
	Berth

	
	Cyclic_Unloader

	Gantry crane

	Harbour crane

	Mobile crane

Continuous_Unloader

	Continuous screw

	
	Conveyor

	Hinterland conveyor

	Quay conveyor

	
	Storage

	Silo

	Warehouse

	
	Unloading_station

	Hinterland station

	
	Commodity

	Maize

	Soybean

	Wheat

	
	Vessel

	Handysize

	Handymax

	Panamax

	
	Labour

	
class opentisim.agribulk_objects.Berth(name=[], id=None, *args, **kwargs)

	Bases: opentisim.agribulk_mixins.identifiable_properties_mixin, opentisim.agribulk_mixins.history_properties_mixin, opentisim.agribulk_mixins.berth_properties_mixin, opentisim.agribulk_mixins.hascapex_properties_mixin, opentisim.agribulk_mixins.hasopex_properties_mixin, opentisim.agribulk_mixins.hasrevenue_properties_mixin, opentisim.agribulk_mixins.hastriggers_properties_mixin

	
class opentisim.agribulk_objects.Commodity(name=[], id=None, *args, **kwargs)

	Bases: opentisim.agribulk_mixins.identifiable_properties_mixin, opentisim.agribulk_mixins.commodity_properties_mixin, opentisim.agribulk_mixins.hasscenario_properties_mixin

	
class opentisim.agribulk_objects.Continuous_Unloader(name=[], id=None, *args, **kwargs)

	Bases: opentisim.agribulk_mixins.identifiable_properties_mixin, opentisim.agribulk_mixins.history_properties_mixin, opentisim.agribulk_mixins.continuous_properties_mixin, opentisim.agribulk_mixins.hascapex_properties_mixin, opentisim.agribulk_mixins.hasopex_properties_mixin, opentisim.agribulk_mixins.hasrevenue_properties_mixin, opentisim.agribulk_mixins.hastriggers_properties_mixin

	
class opentisim.agribulk_objects.Conveyor_Hinter(name=[], id=None, *args, **kwargs)

	Bases: opentisim.agribulk_mixins.identifiable_properties_mixin, opentisim.agribulk_mixins.history_properties_mixin, opentisim.agribulk_mixins.conveyor_properties_mixin, opentisim.agribulk_mixins.hascapex_properties_mixin, opentisim.agribulk_mixins.hasopex_properties_mixin, opentisim.agribulk_mixins.hasrevenue_properties_mixin, opentisim.agribulk_mixins.hastriggers_properties_mixin

	
class opentisim.agribulk_objects.Conveyor_Quay(name=[], id=None, *args, **kwargs)

	Bases: opentisim.agribulk_mixins.identifiable_properties_mixin, opentisim.agribulk_mixins.history_properties_mixin, opentisim.agribulk_mixins.conveyor_properties_mixin, opentisim.agribulk_mixins.hascapex_properties_mixin, opentisim.agribulk_mixins.hasopex_properties_mixin, opentisim.agribulk_mixins.hasrevenue_properties_mixin, opentisim.agribulk_mixins.hastriggers_properties_mixin

	
class opentisim.agribulk_objects.Cyclic_Unloader(name=[], id=None, *args, **kwargs)

	Bases: opentisim.agribulk_mixins.identifiable_properties_mixin, opentisim.agribulk_mixins.history_properties_mixin, opentisim.agribulk_mixins.cyclic_properties_mixin, opentisim.agribulk_mixins.hascapex_properties_mixin, opentisim.agribulk_mixins.hasopex_properties_mixin, opentisim.agribulk_mixins.hasrevenue_properties_mixin, opentisim.agribulk_mixins.hastriggers_properties_mixin

	
class opentisim.agribulk_objects.Energy(name=[], id=None, *args, **kwargs)

	Bases: opentisim.agribulk_mixins.identifiable_properties_mixin, opentisim.agribulk_mixins.energy_properties_mixin

	
class opentisim.agribulk_objects.Labour(name=[], id=None, *args, **kwargs)

	Bases: opentisim.agribulk_mixins.identifiable_properties_mixin, opentisim.agribulk_mixins.labour_properties_mixin

	
class opentisim.agribulk_objects.Quay_wall(name=[], id=None, *args, **kwargs)

	Bases: opentisim.agribulk_mixins.identifiable_properties_mixin, opentisim.agribulk_mixins.quay_wall_properties_mixin, opentisim.agribulk_mixins.history_properties_mixin, opentisim.agribulk_mixins.hascapex_properties_mixin, opentisim.agribulk_mixins.hasopex_properties_mixin, opentisim.agribulk_mixins.hasrevenue_properties_mixin, opentisim.agribulk_mixins.hastriggers_properties_mixin

	
class opentisim.agribulk_objects.Storage(name=[], id=None, *args, **kwargs)

	Bases: opentisim.agribulk_mixins.identifiable_properties_mixin, opentisim.agribulk_mixins.history_properties_mixin, opentisim.agribulk_mixins.storage_properties_mixin, opentisim.agribulk_mixins.hascapex_properties_mixin, opentisim.agribulk_mixins.hasopex_properties_mixin, opentisim.agribulk_mixins.hasrevenue_properties_mixin, opentisim.agribulk_mixins.hastriggers_properties_mixin

	
class opentisim.agribulk_objects.Train(name=[], id=None, *args, **kwargs)

	Bases: opentisim.agribulk_mixins.identifiable_properties_mixin, opentisim.agribulk_mixins.train_properties_mixin

	
class opentisim.agribulk_objects.Unloading_station(name=[], id=None, *args, **kwargs)

	Bases: opentisim.agribulk_mixins.identifiable_properties_mixin, opentisim.agribulk_mixins.unloading_station_properties_mixin

	
class opentisim.agribulk_objects.Vessel(name=[], id=None, *args, **kwargs)

	Bases: opentisim.agribulk_mixins.identifiable_properties_mixin, opentisim.agribulk_mixins.vessel_properties_mixin

opentisim.agribulk_system module

	
class opentisim.agribulk_system.System(startyear=2019, lifecycle=20, operational_hours=5840, debug=False, elements=[], crane_type_defaults={'consumption': 485, 'crane_type': 'Mobile crane', 'crew': 3, 'delivery_time': 1, 'eff_fact': 0.35, 'hourly_cycles': 25, 'insurance_perc': 0.01, 'lifespan': 40, 'lifting_capacity': 30, 'maintenance_perc': 0.02, 'mobilisation_perc': 0.15, 'name': 'Mobile_crane_01', 'ownership': 'Terminal operator', 'unit_rate': 3325000}, storage_type_defaults={'capacity': 6000, 'consumption': 0.002, 'crew': 1, 'delivery_time': 1, 'insurance_perc': 0.01, 'lifespan': 30, 'maintenance_perc': 0.02, 'mobilisation_min': 200000, 'mobilisation_perc': 0.003, 'name': 'Silo_01', 'ownership': 'Terminal operator', 'storage_type': 'Silos', 'type': 'silo', 'unit_rate': 60}, allowable_waiting_service_time_ratio_berth=0.3, allowable_berth_occupancy=0.4, allowable_dwelltime=0.049315068493150684, allowable_waiting_service_time_ratio_station=0.5, allowable_station_occupancy=0.4)

	Bases: object

This class implements the ‘complete supply chain’ concept (Van Koningsveld et al, 2020) for agribulk terminals.

The module allows variation of the type of quay crane used and the type of storage used.

Terminal development is governed by the following triggers:
- the allowable waiting time as a factor of service time at the berth
- the allowable dwell time of cargo in the storage area, and
- the allowable waiting time as a factor of service time at the station.

	
berth_invest(year, handysize, handymax, panamax)

	Given the overall objectives for the terminal apply the following decision recipe (Van Koningsveld and Mulder,
2004) for the berth investments.

	Decision recipe Berth:

	QSC: berth_occupancy & allowable_waiting_service_time_ratio
Benchmarking procedure: there is a problem if the estimated berth_occupancy triggers a waiting time over
service time ratio that is larger than the allowed waiting time over service time ratio

	allowable_waiting_service_time_ratio = .30 # 30% (see PIANC (2014))

	
	a berth needs:

	
	a quay, and

	cranes (min:1 and max: max_cranes)

	
	berth occupancy depends on:

	
	total_calls, total_vol and time needed for mooring, unmooring

	total_service_capacity as delivered by the cranes

	berth occupancy in combination with nr of berths is used to lookup the waiting over service time ratio

	Intervention procedure: invest enough to make the planned waiting service time ratio < allowable waiting

	service time ratio
- adding berths, quays and cranes decreases berth_occupancy_rate (and increases the number of servers)

which will yield a smaller waiting time over service time ratio

	
calculate_berth_occupancy(year, handysize_calls, handymax_calls, panamax_calls)

	
	Find all cranes and sum their effective_capacity to get service_capacity

	Divide callsize_per_vessel by service_capacity and add mooring time to get total time at berth

	Occupancy is total_time_at_berth divided by operational hours

	
calculate_demurrage_cost(year)

	Find the demurrage cost per type of vessel and sum all demurrage cost

	
calculate_energy_cost(year)

	
	calculate the value of the total demand in year (demand * handling fee)

2. calculate the maximum amount that can be handled (service capacity * operational hours)
Terminal.revenues is the minimum of 1. and 2.

	
calculate_revenue(year)

	
	calculate the value of the total demand in year (demand * handling fee)

2. calculate the maximum amount that can be handled (service capacity * operational hours)
Terminal.revenues is the minimum of 1. and 2.

	
calculate_station_occupancy(year)

	The station occupancy is calculated based on the service rate for the throughput of the online quay unloaders
(effective capacity * occupancy). The unloading station should at least be able to handle the throughput by the
online quay unloaders at a level that the station occupancy planned remains below the target occupancy level.

	
calculate_vessel_calls(year=2019)

	Calculate volumes to be transported and the number of vessel calls (both per vessel type and in total)

	
check_crane_slot_available()

	

	
conveyor_hinter_invest(year, agribulk_defaults_hinterland_conveyor_data)

	Given the overall objectives for the terminal apply the following decision recipe (Van Koningsveld and Mulder,
2004) for the hinter conveyor investments.

Operational objective: maintain a hinter conveyor capacity that at least matches the station unloading capacity
(so basically the hinter conveyors follow what happens on the station)

	Decision recipe quay conveyor:

	QSC: hinter_conveyor_capacity planned
Benchmarking procedure: there is a problem when the hinter_conveyor_capacity_planned is smaller than the
station_service_rate_planned

For the hinter conveyor investments the strategy is to at least match the unloading station capacity

	Intervention procedure: the intervention strategy is to add hinter conveyors until the trigger is achieved

	
	find out how much hinter_conveyor_capacity is planned

	find out how much station_service_rate_planned is planned

	add hinter_conveyor_capacity until it matches station_service_rate_planned

	
conveyor_quay_invest(year, agribulk_defaults_quay_conveyor_data)

	Given the overall objectives for the terminal apply the following decision recipe (Van Koningsveld and
Mulder, 2004) for the quay conveyor investments.

Operational objective: maintain a quay conveyor capacity that at least matches the quay crane capacity (so
basically the quay conveyors follow what happens on the berth)

	Decision recipe quay conveyor:

	QSC: quay_conveyor_capacity planned
Benchmarking procedure: there is a problem when the quay_conveyor_capacity_planned is smaller than the
quay_crane_service_rate_planned

For the quay conveyor investments the strategy is to at least match the quay crane processing capacity

	Intervention procedure: the intervention strategy is to add quay conveyors until the trigger is achieved

	
	find out how much quay_conveyor_capacity is planned

	find out how much quay_crane_service_rate is planned

	add quay_conveyor_capacity until it matches quay_crane_service_rate

	
crane_invest(year)

	Given the overall objectives for the terminal apply the following decision recipe (Van Koningsveld and
Mulder, 2004) for the crane investments.

	Decision recipe Crane:

	QSC: planned waiting over service time ratio
Benchmarking procedure (triggered in self.berth_invest): there is a problem when the planned planned
waiting over service time ratio is larger than the max allowable waiting over service time ratio
Intervention procedure: invest until planned waiting over service time ratio is below the max allowable
waiting over service time ratio

	
quay_invest(year, length, depth)

	Given the overall objectives for the terminal apply the following decision recipe (Van Koningsveld and
Mulder, 2004) for the quay investments.

	Decision recipe Quay:

	QSC: quay_per_berth
Benchmarking procedure (triggered in self.berth_invest): there is a problem when

the number of berths > the number of quays, but also while the planned waiting over service time ratio is
too large

Intervention procedure: invest enough to make sure that each quay has a berth and the planned waiting over
service time ratio is below the max allowable waiting over service time ratio

	adding quay will increase quay_per_berth

	quay_wall.length must be long enough to accommodate largest expected vessel

	quay_wall.depth must be deep enough to accommodate largest expected vessel

	quay_wall.freeboard must be high enough to accommodate largest expected vessel

	
simulate()

	The ‘simulate’ method implements the terminal investment strategy for this terminal class.

This method automatically generates investment decisions, parametrically derived from overall demand trends and
a number of investment triggers.

Generic approaches based on:
- PIANC. 2014. Master plans for the development of existing ports. MarCom - Report 158, PIANC
- Van Koningsveld, M. (Ed.), Verheij, H., Taneja, P. and De Vriend, H.J. (in preparation). Ports and Waterways.

Navigating the changing world. TU Delft, Delft, The Netherlands.

	Van Koningsveld, M. and J. P. M. Mulder. 2004. Sustainable Coastal Policy Developments in the
Netherlands. A Systematic Approach Revealed. Journal of Coastal Research 20(2), pp. 375-385

Specific application based on (modifications have been applied where deemed an improvement):
- Ijzermans, W., 2019. Terminal design optimization. Adaptive agribulk terminal planning

in light of an uncertain future. Master’s thesis. Delft University of Technology, Netherlands.
URL: http://resolver.tudelft.nl/uuid:7ad9be30-7d0a-4ece-a7dc-eb861ae5df24.

The simulate method applies Frame of Reference style decisions while stepping through each year of the terminal
lifecycle and checks if investments are needed (in light of strategic objective, operational objective,
QSC, decision recipe and intervention method):

	for each year estimate the anticipated vessel arrivals based on the expected demand

	for each year evaluate which investments are needed given the strategic and operational objectives

	for each year calculate the energy costs (requires insight in realized demands)

	for each year calculate the demurrage costs (requires insight in realized demands)

	for each year calculate terminal revenues (requires insight in realized demands)

	collect all cash flows (capex, opex, revenues)

	calculate PV’s and aggregate to NPV

	
storage_invest(year, agribulk_defaults_storage_data)

	Given the overall objectives for the terminal apply the following decision recipe (Van Koningsveld and
Mulder, 2004) for the storage investments.

Operational objective: maintain a storage capacity that is large enough to at least contain one time the largest
vessel call size or that is large enough to accommodate a maximum allowable dwell time plus 10 percent.

	Decision recipe storage:

	QSC: storage_capacity
Benchmarking procedure: there is a problem when the storage_capacity is too small to store one time the
largest call size or when it is too small to allow for a predetermined max allowable dwell time

The max allowable dwell time is here determined as 5% of the annual demand, increased by 10% (PIANC, 2014)

Intervention procedure: the intervention strategy is to add storage until the benchmarking trigger is
achieved. The trigger is the max of one call size, or the volume derived from the dwell time requirement.

	
terminal_capacity_plot(width=0.25, alpha=0.6, fontsize=20)

	Gather data from Terminal and plot which elements come online when

	
terminal_elements_plot(width=0.1, alpha=0.6, fontsize=20, demand_step=100000)

	Gather data from Terminal and plot which elements come online when

	
train_call(year)

	Calculation of the train calls per year, this is calculated from:
- find out how much throughput there is
- find out how much cargo the train can transport
- calculate the numbers of train calls

	
unloading_station_invest(year)

	The operational objective for the investment strategy for unloading stations is to have sufficient planned
unloading stations to keep the station occupancy below a given threshold for the quay crane capacity planned.

current strategy is to add unloading stations as soon as a service trigger is achieved
- find out how much service capacity is online
- find out how much service capacity is planned
- find out how much service capacity is needed
- add service capacity until service_trigger is no longer exceeded

opentisim.container_defaults module

Main generic object classes:
- 1. Quay_wall
- 2. Berth
- 3. Cyclic_Unloader

	STS crane

	
	Horizontal transport

	Tractor trailer

	
	Commodity

	TEU

	
	Containers

	Laden

	Reefer

	Empty

	OOG

	
	Laden and reefer stack

	
	Stack equipment

	
	Empty stack

	
	OOG stack

	
	Gates

	
	Empty handler

	
	Vessel

	
	Labour

	
	Energy

	
	General

	
	Indirect Costs

opentisim.container_mixins module

Basic properties mixins:

	identifiable_properties_mixin

	history_properties_mixin

	hascapex_properties_mixin

	hasopex_properties_mixin

	hasrevenue_properties_mixin

	hastriggers_properties_mixin

	quay_wall_properties_mixin

	berth_properties_mixin

	cyclic_properties_mixin

	transport_properties_mixin

	container_properties_mixin

	laden_stack_properties_mixin

	empty_stack_properties_mixin

	oog_stack_properties_mixin

	stack_equipment_properties_mixin

	gate_properties_mixin

	empty_handler_properties_mixin

	commodity_properties_mixin

	vessel_properties_mixin

	labour_properties_mixin

	hasscenario_properties_mixin

	
class opentisim.container_mixins.berth_properties_mixin(crane_type, max_cranes, delivery_time, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.commodity_properties_mixin(handling_fee, fully_cellular_perc, panamax_perc, panamax_max_perc, post_panamax_I_perc, post_panamax_II_perc, new_panamax_perc, VLCS_perc, ULCS_perc, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.container_properties_mixin(type, teu_factor, dwell_time, peak_factor, stack_occupancy, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.cyclic_properties_mixin(ownership, delivery_time, lifespan, unit_rate, mobilisation_perc, maintenance_perc, consumption, insurance_perc, crew, crane_type, lifting_capacity, hourly_cycles, eff_fact, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.empty_handler_properties_mixin(type, ownership, delivery_time, lifespan, unit_rate, mobilisation, maintenance_perc, crew, salary, fuel_consumption, required, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.empty_stack_properties_mixin(ownership, delivery_time, lifespan, mobilisation, maintenance_perc, width, height, length, capacity, gross_tgs, area_factor, pavement, drainage, household, digout, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.energy_properties_mixin(price, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.gate_properties_mixin(type, ownership, delivery_time, lifespan, unit_rate, mobilisation, maintenance_perc, crew, salary, canopy_costs, area, staff_gates, service_gates, design_capacity, exit_inspection_time, entry_inspection_time, peak_hour, peak_day, peak_factor, truck_moves, operating_days, capacity, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.general_services_mixin(type, office, office_cost, workshop, workshop_cost, fuel_station_cost, scanning_inspection_area, scanning_inspection_area_cost, lighting_mast_required, lighting_mast_cost, firefight_cost, maintenance_tools_cost, terminal_operating_software_cost, electrical_station_cost, repair_building, repair_building_cost, ceo, secretary, administration, hr, commercial, operations, engineering, security, general_maintenance, crew_required, delivery_time, lighting_consumption, general_consumption, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.hascapex_properties_mixin(capex=[], *args, **kwargs)

	Bases: object

Something has CAPEX

capex: list with cost to be applied from investment year

	
class opentisim.container_mixins.hasland_properties_mixin(land_use=[], *args, **kwargs)

	Bases: object

Something has land use [m^2]

land_use: list with land use to be applied from investment year

	
class opentisim.container_mixins.hasopex_properties_mixin(labour=[], maintenance=[], energy=[], insurance=[], lease=[], demurrage=[], residual=[], fuel=[], *args, **kwargs)

	Bases: object

Something has OPEX

opex: list with cost to be applied from investment year

	
class opentisim.container_mixins.hasrevenue_properties_mixin(renevue=[], *args, **kwargs)

	Bases: object

Something has Revenue

revenue: list with revenues to be applied from investment year

	
class opentisim.container_mixins.hasscenario_properties_mixin(historic_data=[], scenario_data=[], *args, **kwargs)

	Bases: object

Something has a scenario

historic_data: observed demand
scenario_data: generated estimates of future demand

	
plot_demand(width=0.1, alpha=0.6, fontsize=20)

	generate a histogram of the demand data

	
scenario_random(startyear=2019, lifecycle=20, rate=1.02, mu=0.01, sigma=0.065)

	trend generated from random growth rate increments

	
class opentisim.container_mixins.hastriggers_properties_mixin(triggers=[], *args, **kwargs)

	Bases: object

Something has InvestmentTriggers

triggers: list with revenues to be applied from investment year

	
class opentisim.container_mixins.history_properties_mixin(year_purchase=[], year_online=[], *args, **kwargs)

	Bases: object

Something that has a purchase history

purchase_date: year in which the decision was made to add another element
online_date: year by which the elements starts to perform

	
class opentisim.container_mixins.identifiable_properties_mixin(name=[], id=None, *args, **kwargs)

	Bases: object

Something that has a name and id

name: a name
id: a unique id generated with uuid

	
class opentisim.container_mixins.indirect_costs_mixin(preliminaries, engineering, miscellaneous, electrical_works_fuel_terminal, electrical_works_power_terminal, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.labour_properties_mixin(international_salary, international_staff, local_salary, local_staff, operational_salary, shift_length, annual_shifts, daily_shifts, blue_collar_salary, white_collar_salary, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.laden_stack_properties_mixin(ownership, delivery_time, lifespan, mobilisation, maintenance_perc, width, height, length, capacity, gross_tgs, area_factor, pavement, drainage, household, digout_margin, reefer_factor, consumption, reefer_rack, reefers_present, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.land_price_mixin(price, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.oog_stack_properties_mixin(ownership, delivery_time, lifespan, mobilisation, maintenance_perc, width, height, length, capacity, gross_tgs, area_factor, pavement, drainage, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.quay_wall_properties_mixin(ownership, delivery_time, lifespan, mobilisation_min, mobilisation_perc, maintenance_perc, insurance_perc, berthing_gap, freeboard, Gijt_constant, Gijt_coefficient, max_sinkage, wave_motion, safety_margin, apron_width, apron_pavement, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.stack_equipment_properties_mixin(type, ownership, delivery_time, lifespan, unit_rate, mobilisation, maintenance_perc, insurance_perc, crew, salary, required, fuel_consumption, power_consumption, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.transport_properties_mixin(type, ownership, delivery_time, lifespan, unit_rate, mobilisation, maintenance_perc, insurance_perc, crew, salary, utilisation, fuel_consumption, productivity, required, non_essential_moves, *args, **kwargs)

	Bases: object

	
class opentisim.container_mixins.vessel_properties_mixin(type, delivery_time, call_size, LOA, draught, beam, max_cranes, all_turn_time, mooring_time, demurrage_rate, transport_costs, all_in_transport_costs, *args, **kwargs)

	Bases: object

opentisim.container_objects module

Main generic object classes:

	
	Quay_wall

	
	Berth

	
	Cyclic_Unloader

	STS crane

	
	Horizontal transport

	Tractor trailer

	
	Commodity

	TEU

	
	Containers

	Laden

	Reefer

	Empty

	OOG

	
	Laden and reefer stack

	RTG stack

	RMG stack

	SC stack

	RS stack

	
	Stack equipment

	RTG

	RMG

	SC

	RS

	
	Empty stack

	
	OOG stack

	
	Gates

	
	Empty handler

	
	Vessel

	
	Labour

	
	Energy

	
	General

	
	Indirect Costs

	
class opentisim.container_objects.Berth(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.history_properties_mixin, opentisim.container_mixins.berth_properties_mixin, opentisim.container_mixins.hascapex_properties_mixin, opentisim.container_mixins.hasopex_properties_mixin, opentisim.container_mixins.hasrevenue_properties_mixin, opentisim.container_mixins.hastriggers_properties_mixin

	
class opentisim.container_objects.Commodity(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.commodity_properties_mixin, opentisim.container_mixins.hasscenario_properties_mixin

	
class opentisim.container_objects.Container(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.container_properties_mixin

	
class opentisim.container_objects.Cyclic_Unloader(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.history_properties_mixin, opentisim.container_mixins.cyclic_properties_mixin, opentisim.container_mixins.hascapex_properties_mixin, opentisim.container_mixins.hasopex_properties_mixin, opentisim.container_mixins.hasrevenue_properties_mixin, opentisim.container_mixins.hastriggers_properties_mixin

	
class opentisim.container_objects.Empty_Handler(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.history_properties_mixin, opentisim.container_mixins.empty_handler_properties_mixin, opentisim.container_mixins.hascapex_properties_mixin, opentisim.container_mixins.hasopex_properties_mixin, opentisim.container_mixins.hastriggers_properties_mixin

	
class opentisim.container_objects.Empty_Stack(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.history_properties_mixin, opentisim.container_mixins.empty_stack_properties_mixin, opentisim.container_mixins.hasopex_properties_mixin, opentisim.container_mixins.hascapex_properties_mixin, opentisim.container_mixins.hastriggers_properties_mixin, opentisim.container_mixins.hasland_properties_mixin

	
class opentisim.container_objects.Energy(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.energy_properties_mixin

	
class opentisim.container_objects.Gate(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.history_properties_mixin, opentisim.container_mixins.gate_properties_mixin, opentisim.container_mixins.hascapex_properties_mixin, opentisim.container_mixins.hasopex_properties_mixin, opentisim.container_mixins.hastriggers_properties_mixin, opentisim.container_mixins.hasland_properties_mixin

	
class opentisim.container_objects.General_Services(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.hasland_properties_mixin, opentisim.container_mixins.hasopex_properties_mixin, opentisim.container_mixins.hascapex_properties_mixin, opentisim.container_mixins.general_services_mixin, opentisim.container_mixins.history_properties_mixin

	
class opentisim.container_objects.Horizontal_Transport(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.history_properties_mixin, opentisim.container_mixins.transport_properties_mixin, opentisim.container_mixins.hascapex_properties_mixin, opentisim.container_mixins.hasopex_properties_mixin, opentisim.container_mixins.hastriggers_properties_mixin

	
opentisim.container_objects.Indirect_Costs

	alias of opentisim.container_objects.Indirect Costs

	
class opentisim.container_objects.Labour(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.labour_properties_mixin

	
class opentisim.container_objects.Laden_Stack(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.history_properties_mixin, opentisim.container_mixins.laden_stack_properties_mixin, opentisim.container_mixins.hasopex_properties_mixin, opentisim.container_mixins.hascapex_properties_mixin, opentisim.container_mixins.hastriggers_properties_mixin, opentisim.container_mixins.hasland_properties_mixin

	
opentisim.container_objects.Land_Price

	alias of opentisim.container_objects.Land Price

	
class opentisim.container_objects.OOG_Stack(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.history_properties_mixin, opentisim.container_mixins.oog_stack_properties_mixin, opentisim.container_mixins.hasopex_properties_mixin, opentisim.container_mixins.hascapex_properties_mixin, opentisim.container_mixins.hastriggers_properties_mixin, opentisim.container_mixins.hasland_properties_mixin

	
class opentisim.container_objects.Quay_wall(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.quay_wall_properties_mixin, opentisim.container_mixins.history_properties_mixin, opentisim.container_mixins.hascapex_properties_mixin, opentisim.container_mixins.hasopex_properties_mixin, opentisim.container_mixins.hasrevenue_properties_mixin, opentisim.container_mixins.hastriggers_properties_mixin, opentisim.container_mixins.hasland_properties_mixin

	
class opentisim.container_objects.Stack_Equipment(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.history_properties_mixin, opentisim.container_mixins.stack_equipment_properties_mixin, opentisim.container_mixins.hascapex_properties_mixin, opentisim.container_mixins.hasopex_properties_mixin, opentisim.container_mixins.hastriggers_properties_mixin

	
class opentisim.container_objects.Vessel(name=[], id=None, *args, **kwargs)

	Bases: opentisim.container_mixins.identifiable_properties_mixin, opentisim.container_mixins.vessel_properties_mixin

opentisim.container_system module

	
class opentisim.container_system.System(terminal_name='Terminal', startyear=2019, lifecycle=20, operational_hours=7500, debug=False, elements=[], crane_type_defaults={'consumption': 8, 'crane_type': 'STS crane', 'crew': 5.5, 'delivery_time': 1, 'eff_fact': 0.75, 'hourly_cycles': 25, 'insurance_perc': 0.01, 'lifespan': 40, 'lifting_capacity': 2.13, 'maintenance_perc': 0.02, 'mobilisation_perc': 0.15, 'name': 'STS_crane', 'ownership': 'Terminal operator', 'unit_rate': 10000000}, stack_equipment='rs', laden_stack='rs', allowable_waiting_service_time_ratio_berth=0.1, allowable_berth_occupancy=0.6, laden_perc=0.8, reefer_perc=0.1, empty_perc=0.05, oog_perc=0.05, transhipment_ratio=0.69, energy_price=0.17, fuel_price=1, land_price=0)

	Bases: object

This class implements the ‘complete supply chain’ concept (Van Koningsveld et al, 2020) for container terminals.

The module allows variation of the type of quay crane used and the type of quay crane used and the type of stack
equipment used.

Terminal development is governed by the following triggers:
- the allowable waiting time as a factor of service time at the berth, and
- the distribution ratios (adding up to 1) for:

	ladens

	empties

	reefers

	out of gauges

	the transhipment ratio

	
berth_invest(year, fully_cellular, panamax, panamax_max, post_panamax_I, post_panamax_II, new_panamax, VLCS, ULCS)

	Given the overall objectives for the terminal apply the following decision recipe (Van Koningsveld and
Mulder, 2004) for the berth investments.

	Decision recipe Berth:

	QSC: berth_occupancy & allowable_waiting_service_time_ratio
Benchmarking procedure: there is a problem if the estimated berth_occupancy triggers a waiting time over
service time ratio that is larger than the allowed waiting time over service time ratio

	allowable_waiting_service_time_ratio = .10 # 10% (see PIANC (2014, 2014b))

	
	a berth needs:

	
	a quay

	cranes (min:1 and max: max_cranes)

	
	berth occupancy depends on:

	
	total_calls, total_vol and time needed for mooring, unmooring

	total_service_capacity as delivered by the cranes

	berth occupancy in combination with nr of berths is used to lookup the waiting over service time ratio

	Intervention procedure: invest enough to make the planned waiting service time ratio < allowable waiting

	service time ratio
- adding berths, quays and cranes decreases berth_occupancy_rate (and increases the number of servers)

which will yield a smaller waiting time over service time ratio

	
box_moves(year)

	Calculate the box moves as input for the power and fuel consumption

	
calculate_berth_occupancy(year, fully_cellular_calls, panamax_calls, panamax_max_calls, post_panamax_I_calls, post_panamax_II_calls, new_panamax_calls, VLCS_calls, ULCS_calls)

	
	Find all cranes and sum their effective_capacity to get service_capacity

	Divide callsize_per_vessel by service_capacity and add mooring time to get total time at berth

	Occupancy is total_time_at_berth divided by operational hours

	
calculate_demurrage_cost(year)

	Find the demurrage cost per type of vessel and sum all demurrage cost

	
calculate_energy_cost(year)

	# todo voeg energy toe voor nieuwe elementen

	
calculate_fuel_cost(year)

	Fuel cost

	
calculate_gate_minutes(year)

	
	Find all gates and sum their effective_capacity to get service_capacity

	Calculate average entry and exit time to get total time at gate

	Occupancy is total_minutes_at_gate per hour divided by 1 hour

	
calculate_general_labour_cost(year)

	General labour

	
calculate_indirect_costs()

	Indirect costs are a function of overall CAPEX.

	
calculate_land_use(year)

	Calculate total land use by summing all land_use values of the physical terminal elements

	
calculate_throughput(year)

	Find throughput (minimum of crane capacity and demand)

	
calculate_vessel_calls(year)

	Calculate volumes to be transported and the number of vessel calls (both per vessel type and in total)

	
check_crane_slot_available()

	

	
crane_invest(year)

	Given the overall objectives for the terminal apply the following decision recipe (Van Koningsveld and
Mulder, 2004) for the crane investments.

	Decision recipe Crane:

	QSC: planned waiting over service time ratio
Benchmarking procedure (triggered in self.berth_invest): there is a problem when the planned planned
waiting over service time ratio is larger than the max allowable waiting over service time ratio
Intervention procedure: invest until planned waiting over service time ratio is below the max allowable
waiting over service time ratio

	
empty_handler_invest(year)

	current strategy is to add empty hanlders as soon as a service trigger is achieved
- find out how many empty handlers are online
- find out how many empty handlers areplanned
- find out how many empty handlers are needed
- add empty handlers until service_trigger is no longer exceeded

	
empty_stack_capacity(year)

	Calculate the stack capacity for empty containers

	
empty_stack_invest(year)

	current strategy is to add stacks as soon as trigger is achieved
- find out how much stack capacity is online
- find out how much stack capacity is planned
- find out how much stack capacity is needed
- add stack capacity until service_trigger is no longer exceeded

	
gate_invest(year)

	current strategy is to add gates as soon as trigger is achieved
- find out how much gate capacity is online
- find out how much gate capacity is planned
- find out how much gate capacity is needed
- add gate capacity until service_trigger is no longer exceeded

	
general_services_invest(year)

	

	
horizontal_transport_invest(year)

	current strategy is to add horizontal transport (tractors) as soon as a service trigger is achieved
- find out how many cranes are online and planned
- find out how many tractors trailers are online and planned (each STS needs a pre-set number of tractors trailers)
- add tractor trailers until the required amount (given by the cranes) is achieved

	
laden_reefer_stack_capacity(year)

	Calculate the stack capacity for laden and reefer containers

	
laden_reefer_stack_invest(year)

	
	current strategy is to add stacks as soon as trigger is achieved

	
	find out how much stack capacity is planned

	find out how much stack capacity is required

	add stack capacity until service_trigger is no longer exceeded

The laden stack has a number of positions for laden containers and a number of positions for reefer containers

	
laden_stack_area_plot(width=0.25, alpha=0.6)

	Gather data from laden stack area and plot it against demand

	
land_use_plot(width=0.25, alpha=0.6, fontsize=20)

	Gather data from Terminal and plot which elements come online when

	
oog_stack_capacity(year)

	Calculate the stack capacity for OOG containers

	
oog_stack_invest(year)

	Current strategy is to add stacks as soon as trigger is achieved
- find out how much stack capacity is planned
- find out how much stack capacity is needed
- add stack capacity until service_trigger is no longer exceeded

	
opex_plot(cash_flows)

	Gather data from Terminal elements and combine into a cash flow plot

	
quay_invest(year, length, depth)

	Given the overall objectives for the terminal apply the following decision recipe (Van Koningsveld and
Mulder, 2004) for the quay investments.

	Decision recipe Quay:

	QSC: quay_per_berth
Benchmarking procedure (triggered in self.berth_invest): there is a problem when

the number of berths > the number of quays, but also while the planned waiting over service time ratio is
too large

Intervention procedure: invest enough to make sure that each quay has a berth and the planned waiting over
service time ratio is below the max allowable waiting over service time ratio

	adding quay will increase quay_per_berth

	quay_wall.length must be long enough to accommodate largest expected vessel

	quay_wall.depth must be deep enough to accommodate largest expected vessel

	quay_wall.freeboard must be high enough to accommodate largest expected vessel

	
simulate()

	The ‘simulate’ method implements the terminal investment strategy for this terminal class.

This method automatically generates investment decisions, parametrically derived from overall demand trends and
a number of investment triggers.

Generic approaches based on:
- Quist, P. and Wijdeven, B., 2014. Ports & Terminals Hand-out. Chapter 7 Container terminals. CIE4330/CIE5306
- PIANC. 2014. Master plans for the development of existing ports. MarCom - Report 158, PIANC
- PIANC. 2014b. Design principles for small and medium marine containter terminals. MarCom - Report 135, PIANC
- Van Koningsveld, M. (Ed.), Verheij, H., Taneja, P. and De Vriend, H.J. (2020). Ports and Waterways.

Navigating the changing world. TU Delft, Delft, The Netherlands.

	Van Koningsveld, M. and J. P. M. Mulder. 2004. Sustainable Coastal Policy Developments in the
Netherlands. A Systematic Approach Revealed. Journal of Coastal Research 20(2), pp. 375-385

Specific application based on (modifications have been applied where deemed an improvement):
- Koster, P.H.F., 2019. Concept level container terminal design. Investigating the consequences of accelerating

the concept design phase by modelling the automatable tasks. Master’s thesis. Delft University of Technology,
Netherlands. URL: http://resolver.tudelft.nl/uuid:131133bf-9021-4d67-afcb-233bd8302ce0.

	Stam, H.W.B., 2020. Offshore-Onshore Port Systems. A framework for the financial evaluation of offshore
container terminals. Master’s thesis. Delft University of Technology, Netherlands.

The simulate method applies frame of reference style decisions while stepping through each year of the terminal
lifecycle and check if investment is needed (in light of strategic objective, operational objective,
QSC, decision recipe, intervention method):

	for each year estimate the anticipated vessel arrivals based on the expected demand

	for each year evaluate which investment are needed given the strategic and operational objectives

	for each year calculate the energy costs (requires insight in realized demands)

	for each year calculate the demurrage costs (requires insight in realized demands)

	for each year calculate terminal revenues (requires insight in realized demands)

	collect all cash flows (capex, opex, [revenues])

	calculate PV’s and aggregate to NPV

	
stack_equipment_invest(year)

	current strategy is to add stack equipment as soon as a service trigger is achieved
- find out how much stack equipment is online
- find out how much stack equipment is planned
- find out how much stack equipment is needed
- add equipment until service_trigger is no longer exceeded

	
terminal_capacity_plot(width=0.25, alpha=0.6)

	Gather data from Terminal and plot which elements come online when

	
terminal_elements_plot(width=0.08, alpha=0.6, fontsize=20, demand_step=50000)

	Gather data from Terminal and plot which elements come online when

	
throughput_box(year)

	
	Find the total TEU/year for every throughput type (types: ladens, empties, reefers, oogs)

	Translate the total TEU/year to number of boxes for every throughput type

	
throughput_characteristics(year)

	
	Find commodity volume

	Find the on terminal modal split (types: ladens, empties, reefers, oogs)

	Return the total TEU/year for every throughput type

opentisim.hydrogen_defaults module

Defaults for following objects:

	
	Jetty

	
	Berth

	
	Unloader

	Liquid hydrogen

	Ammonia

	MCH

	
	Pipelines

	jetty

	hinterland

	
	Storage

	Liquid hydrogen

	Ammonia

	MCH

	
	H2 retrieval

	Ammonia

	MCH

	
	Commodity

	Liquid hydrogen

	Ammonia

	MCH

	
	Vessel

	smallhydrogen

	largehydrogen

	smallammonia

	largeammonia

	Handysize

	Panamax

	VLCC

	
	Labour

Default values are based on Claes 2018; Corbeau 2018; Daas 2018; Juha 2018;
Kranendonk 2018; Schutz 2018; Schuurmans 2018 and Verstegen 2018

	
opentisim.hydrogen_defaults.commodity_MCH_data = {'handling_fee': 1000, 'handysize_perc': 30, 'historic_data': year volume 0 2014 1000000 1 2015 1100000 2 2016 1250000 3 2017 1400000 4 2018 1500000, 'largeammonia_perc': 0, 'largehydrogen_perc': 0, 'name': 'MCH', 'panamax_perc': 40, 'smallammonia_perc': 0, 'smallhydrogen_perc': 0, 'type': 'MCH', 'vlcc_perc': 30}

	Liquid hydrogen:

	
opentisim.hydrogen_defaults.h2retrieval_lh2_data = {'capacity': 171, 'consumption': 600, 'crew_for5': 1, 'crew_min': 3, 'delivery_time': 2, 'h2retrieval_type': 'tank', 'insurance_perc': 0.01, 'lifespan': 10, 'maintenance_perc': 0.015, 'mobilisation_min': 200000, 'mobilisation_perc': 0.003, 'name': 'H2retrieval_LH2_01', 'ownership': 'Terminal operator', 'type': 'HydrogenTank', 'unit_rate': 18000000}

	Ammonia

	
opentisim.hydrogen_defaults.h2retrieval_nh3_data = {'capacity': 55, 'consumption': 5889, 'crew_for5': 1, 'crew_min': 3, 'delivery_time': 2, 'h2retrieval_type': 'tank', 'insurance_perc': 0.01, 'lifespan': 20, 'maintenance_perc': 0.015, 'mobilisation_min': 200000, 'mobilisation_perc': 0.003, 'name': 'H2retrieval_NH3_01', 'ownership': 'Terminal operator', 'type': 'AmmoniaTank', 'unit_rate': 100000000}

	MCH

	
opentisim.hydrogen_defaults.hinterland_pipeline_data = {'capacity': 4000, 'consumption_coefficient': 80, 'crew': 1, 'delivery_time': 1, 'insurance_perc': 0.01, 'length': 400, 'lifespan': 26, 'maintenance_perc': 0.01, 'mobilisation': 30000, 'name': 'hinterland_pipeline_01', 'ownership': 'Terminal operator', 'type': 'hinterland_pipeline', 'unit_rate_factor': 193000, 'utilisation': 0.8}

	Liquid hydrogen

	
opentisim.hydrogen_defaults.largeammonia_data = {'LOA': 230, 'all_turn_time': 24, 'beam': 40, 'call_size': 55000, 'demurrage_rate': 750, 'draft': 11, 'max_cranes': 2, 'mooring_time': 3, 'name': 'largeammonia_1', 'pump_capacity': 5500, 'type': 'Largeammonia'}

	MCH:

	
opentisim.hydrogen_defaults.largehydrogen_data = {'LOA': 300, 'all_turn_time': 30, 'beam': 43, 'call_size': 30000, 'demurrage_rate': 700, 'draft': 12, 'max_cranes': 3, 'mooring_time': 3, 'name': 'largehydrogen_1', 'pump_capacity': 3000, 'type': 'Largehydrogen'}

	Ammonia:

	
opentisim.hydrogen_defaults.storage_MCH_data = {'capacity': 38500, 'consumption': 10, 'crew_for5': 1, 'crew_min': 3, 'delivery_time': 1, 'insurance_perc': 0.01, 'lifespan': 50, 'maintenance_perc': 0.01, 'mobilisation_min': 200000, 'mobilisation_perc': 0.003, 'name': 'MCHTank_01', 'ownership': 'Terminal operator', 'storage_type': 'tank', 'type': 'MCHTank', 'unit_rate': 35000000}

	Liquid hydrogen

	
opentisim.hydrogen_defaults.storage_lh2_data = {'capacity': 3540, 'consumption': 610, 'crew_for5': 1, 'crew_min': 3, 'delivery_time': 1, 'insurance_perc': 0.01, 'lifespan': 30, 'maintenance_perc': 0.01, 'mobilisation_min': 200000, 'mobilisation_perc': 0.003, 'name': 'HTank_01', 'ownership': 'Terminal operator', 'storage_type': 'tank', 'type': 'HydrogenTank', 'unit_rate': 200000000}

	Ammonia

	
opentisim.hydrogen_defaults.storage_nh3_data = {'capacity': 34130, 'consumption': 100, 'crew_for5': 1, 'crew_min': 3, 'delivery_time': 1, 'insurance_perc': 0.01, 'lifespan': 30, 'maintenance_perc': 0.01, 'mobilisation_min': 200000, 'mobilisation_perc': 0.003, 'name': 'ATank_01', 'ownership': 'Terminal operator', 'storage_type': 'tank', 'type': 'AmmoniaTank', 'unit_rate': 60000000}

	MCH

opentisim.hydrogen_mixins module

Basic properties mixins:

	identifiable_properties_mixin

	history_properties_mixin

	hascapex_properties_mixin

	hasopex_properties_mixin

	hasrevenue_properties_mixin

	hastriggers_properties_mixin

	jetty_properties_mixin

	berth_properties_mixin

	cyclic_properties_mixin

	continuous_properties_mixin

	pipeline_properties_mixin

	storage_properties_mixin

	commodity_properties_mixin

	vessel_properties_mixin

	labour_properties_mixin

	hasscenario_properties_mixin

	
class opentisim.hydrogen_mixins.berth_properties_mixin(crane_type, delivery_time, *args, **kwargs)

	Bases: object

	
class opentisim.hydrogen_mixins.commodity_properties_mixin(type, handling_fee, smallhydrogen_perc, largehydrogen_perc, smallammonia_perc, largeammonia_perc, handysize_perc, panamax_perc, vlcc_perc, *args, **kwargs)

	Bases: object

	
class opentisim.hydrogen_mixins.energy_properties_mixin(price, *args, **kwargs)

	Bases: object

	
class opentisim.hydrogen_mixins.h2retrieval_properties_mixin(type, ownership, delivery_time, lifespan, unit_rate, mobilisation_min, mobilisation_perc, maintenance_perc, crew_min, crew_for5, insurance_perc, h2retrieval_type, consumption, capacity, *args, **kwargs)

	Bases: object

	
class opentisim.hydrogen_mixins.hascapex_properties_mixin(capex=[], *args, **kwargs)

	Bases: object

Something has CAPEX

capex: list with cost to be applied from investment year

	
class opentisim.hydrogen_mixins.hasopex_properties_mixin(labour=[], maintenance=[], energy=[], insurance=[], lease=[], demurrage=[], *args, **kwargs)

	Bases: object

Something has OPEX

opex: list with cost to be applied from investment year

	
class opentisim.hydrogen_mixins.hasrevenue_properties_mixin(renevue=[], residual=[], *args, **kwargs)

	Bases: object

Something has Revenue

revenue: list with revenues to be applied from investment year

	
class opentisim.hydrogen_mixins.hasscenario_properties_mixin(historic_data=[], scenario_data=[], *args, **kwargs)

	Bases: object

Something has a scenario

historic_data: observed demand
scenario_data: generated estimates of future demand

	
plot_demand(width=0.1, alpha=0.6, fontsize=20)

	generate a histogram of the demand data

	
scenario_random(startyear=2019, lifecycle=20, rate=1.02, mu=0.01, sigma=0.065)

	trend generated from random growth rate increments

	
class opentisim.hydrogen_mixins.hastriggers_properties_mixin(triggers=[], *args, **kwargs)

	Bases: object

Something has InvestmentTriggers

triggers: list with revenues to be applied from investment year

	
class opentisim.hydrogen_mixins.history_properties_mixin(year_purchase=[], year_online=[], *args, **kwargs)

	Bases: object

Something that has a purchase history

purchase_date: year in which the decision was made to add another element
online_date: year by which the elements starts to perform

	
class opentisim.hydrogen_mixins.identifiable_properties_mixin(name=[], id=None, *args, **kwargs)

	Bases: object

Something that has a name and id

name: a name
id: a unique id generated with uuid

	
class opentisim.hydrogen_mixins.jetty_properties_mixin(ownership, delivery_time, lifespan, mobilisation_min, mobilisation_perc, maintenance_perc, insurance_perc, Gijt_constant_jetty, jettywidth, jettylength, mooring_dolphins, catwalkwidth, catwalklength, Catwalk_rate, *args, **kwargs)

	Bases: object

	
class opentisim.hydrogen_mixins.labour_properties_mixin(international_salary, international_staff, local_salary, local_staff, operational_salary, shift_length, annual_shifts, *args, **kwargs)

	Bases: object

	
class opentisim.hydrogen_mixins.pipeline_properties_mixin(type, length, ownership, delivery_time, lifespan, unit_rate_factor, mobilisation, maintenance_perc, insurance_perc, consumption_coefficient, crew, utilisation, capacity, *args, **kwargs)

	Bases: object

	
class opentisim.hydrogen_mixins.storage_properties_mixin(type, ownership, delivery_time, lifespan, unit_rate, mobilisation_min, mobilisation_perc, maintenance_perc, crew_min, crew_for5, insurance_perc, storage_type, consumption, capacity, *args, **kwargs)

	Bases: object

	
class opentisim.hydrogen_mixins.train_properties_mixin(wagon_payload, number_of_wagons, *args, **kwargs)

	Bases: object

	
class opentisim.hydrogen_mixins.vessel_properties_mixin(type, call_size, LOA, draft, beam, max_cranes, all_turn_time, pump_capacity, mooring_time, demurrage_rate, *args, **kwargs)

	Bases: object

opentisim.hydrogen_objects module

Main generic object classes:

Defaults for following objects:
- 1. Jetty
- 2. Berth
- 3. Unloader

	Liquid hydrogen

	Ammonia

	MCH

	
	Pipelines

	jetty

	hinterland

	
	Storage

	Liquid hydrogen

	Ammonia

	MCH

	
	H2 retrieval

	Ammonia

	MCH

	
	Commodity

	Liquid hydrogen

	Ammonia

	MCH

	
	Vessel

	smallhydrogen

	largehydrogen

	smallammonia

	largeammonia

	Handysize

	Panamax

	VLCC

	
	Labour

	
class opentisim.hydrogen_objects.Berth(name=[], id=None, *args, **kwargs)

	Bases: opentisim.hydrogen_mixins.identifiable_properties_mixin, opentisim.hydrogen_mixins.history_properties_mixin, opentisim.hydrogen_mixins.berth_properties_mixin, opentisim.hydrogen_mixins.hascapex_properties_mixin, opentisim.hydrogen_mixins.hasopex_properties_mixin, opentisim.hydrogen_mixins.hasrevenue_properties_mixin, opentisim.hydrogen_mixins.hastriggers_properties_mixin

	
class opentisim.hydrogen_objects.Commodity(name=[], id=None, *args, **kwargs)

	Bases: opentisim.hydrogen_mixins.identifiable_properties_mixin, opentisim.hydrogen_mixins.commodity_properties_mixin, opentisim.hydrogen_mixins.hasscenario_properties_mixin

	
class opentisim.hydrogen_objects.Energy(name=[], id=None, *args, **kwargs)

	Bases: opentisim.hydrogen_mixins.identifiable_properties_mixin, opentisim.hydrogen_mixins.energy_properties_mixin

	
class opentisim.hydrogen_objects.H2retrieval(name=[], id=None, *args, **kwargs)

	Bases: opentisim.hydrogen_mixins.identifiable_properties_mixin, opentisim.hydrogen_mixins.history_properties_mixin, opentisim.hydrogen_mixins.h2retrieval_properties_mixin, opentisim.hydrogen_mixins.hascapex_properties_mixin, opentisim.hydrogen_mixins.hasopex_properties_mixin, opentisim.hydrogen_mixins.hasrevenue_properties_mixin, opentisim.hydrogen_mixins.hastriggers_properties_mixin

	
class opentisim.hydrogen_objects.Jetty(name=[], id=None, *args, **kwargs)

	Bases: opentisim.hydrogen_mixins.identifiable_properties_mixin, opentisim.hydrogen_mixins.jetty_properties_mixin, opentisim.hydrogen_mixins.history_properties_mixin, opentisim.hydrogen_mixins.hascapex_properties_mixin, opentisim.hydrogen_mixins.hasopex_properties_mixin, opentisim.hydrogen_mixins.hasrevenue_properties_mixin, opentisim.hydrogen_mixins.hastriggers_properties_mixin

	
class opentisim.hydrogen_objects.Labour(name=[], id=None, *args, **kwargs)

	Bases: opentisim.hydrogen_mixins.identifiable_properties_mixin, opentisim.hydrogen_mixins.labour_properties_mixin

	
class opentisim.hydrogen_objects.Pipeline_Hinter(name=[], id=None, *args, **kwargs)

	Bases: opentisim.hydrogen_mixins.identifiable_properties_mixin, opentisim.hydrogen_mixins.history_properties_mixin, opentisim.hydrogen_mixins.pipeline_properties_mixin, opentisim.hydrogen_mixins.hascapex_properties_mixin, opentisim.hydrogen_mixins.hasopex_properties_mixin, opentisim.hydrogen_mixins.hasrevenue_properties_mixin, opentisim.hydrogen_mixins.hastriggers_properties_mixin

	
class opentisim.hydrogen_objects.Pipeline_Jetty(name=[], id=None, *args, **kwargs)

	Bases: opentisim.hydrogen_mixins.identifiable_properties_mixin, opentisim.hydrogen_mixins.history_properties_mixin, opentisim.hydrogen_mixins.pipeline_properties_mixin, opentisim.hydrogen_mixins.hascapex_properties_mixin, opentisim.hydrogen_mixins.hasopex_properties_mixin, opentisim.hydrogen_mixins.hasrevenue_properties_mixin, opentisim.hydrogen_mixins.hastriggers_properties_mixin

	
class opentisim.hydrogen_objects.Storage(name=[], id=None, *args, **kwargs)

	Bases: opentisim.hydrogen_mixins.identifiable_properties_mixin, opentisim.hydrogen_mixins.history_properties_mixin, opentisim.hydrogen_mixins.storage_properties_mixin, opentisim.hydrogen_mixins.hascapex_properties_mixin, opentisim.hydrogen_mixins.hasopex_properties_mixin, opentisim.hydrogen_mixins.hasrevenue_properties_mixin, opentisim.hydrogen_mixins.hastriggers_properties_mixin

	
class opentisim.hydrogen_objects.Train(name=[], id=None, *args, **kwargs)

	Bases: opentisim.hydrogen_mixins.identifiable_properties_mixin, opentisim.hydrogen_mixins.train_properties_mixin

	
class opentisim.hydrogen_objects.Vessel(name=[], id=None, *args, **kwargs)

	Bases: opentisim.hydrogen_mixins.identifiable_properties_mixin, opentisim.hydrogen_mixins.vessel_properties_mixin

opentisim.hydrogen_system module

	
class opentisim.hydrogen_system.System(startyear=2019, lifecycle=20, operational_hours=5840, debug=False, elements=[], commodity_type_defaults={'handling_fee': 150, 'handysize_perc': 0, 'historic_data': year volume 0 2014 1000000 1 2015 1100000 2 2016 1250000 3 2017 1400000 4 2018 1500000, 'largeammonia_perc': 60, 'largehydrogen_perc': 0, 'name': 'Ammonia', 'panamax_perc': 0, 'smallammonia_perc': 40, 'smallhydrogen_perc': 0, 'type': 'Ammonia', 'vlcc_perc': 0}, storage_type_defaults={'capacity': 34130, 'consumption': 100, 'crew_for5': 1, 'crew_min': 3, 'delivery_time': 1, 'insurance_perc': 0.01, 'lifespan': 30, 'maintenance_perc': 0.01, 'mobilisation_min': 200000, 'mobilisation_perc': 0.003, 'name': 'ATank_01', 'ownership': 'Terminal operator', 'storage_type': 'tank', 'type': 'AmmoniaTank', 'unit_rate': 60000000}, h2retrieval_type_defaults={'capacity': 55, 'consumption': 5889, 'crew_for5': 1, 'crew_min': 3, 'delivery_time': 2, 'h2retrieval_type': 'tank', 'insurance_perc': 0.01, 'lifespan': 20, 'maintenance_perc': 0.015, 'mobilisation_min': 200000, 'mobilisation_perc': 0.003, 'name': 'H2retrieval_NH3_01', 'ownership': 'Terminal operator', 'type': 'AmmoniaTank', 'unit_rate': 100000000}, allowable_berth_occupancy=0.5, allowable_dwelltime=0.038356164383561646, h2retrieval_trigger=1)

	Bases: object

This class implements the ‘complete supply chain’ concept (Van Koningsveld et al, 2020) for hydrogen terminals.
The module allows variation of the commodity type, the storage type and the h2retrieval type. Terminal development
is governed by three triggers: the allowable berth occupancy, the allowable dwell time and an h2retrieval
trigger.

	
H2retrieval_capacity_plot(width=0.25, alpha=0.6)

	Gather data from Terminal and plot which elements come online when

	
Jetty_capacity_plot(width=0.3, alpha=0.6)

	Gather data from Terminal and plot which elements come online when

	
Pipeline1_capacity_plot(width=0.2, alpha=0.6)

	Gather data from Terminal and plot which elements come online when

	
Pipeline2_capacity_plot(width=0.2, alpha=0.6)

	Gather data from Terminal and plot which elements come online when

	
Storage_capacity_plot(width=0.25, alpha=0.6)

	Gather data from Terminal and plot which elements come online when

	
berth_invest(year)

	Given the overall objectives of the terminal

Decision recipe Berth:
QSC: berth_occupancy
Problem evaluation: there is a problem if the berth_occupancy > allowable_berth_occupancy

	allowable_berth_occupancy = .50 # 50%

	
	a berth needs:

	
	a jetty

	
	berth occupancy depends on:

	
	total_calls and total_vol

	total_service_capacity as delivered by the vessels

	Investment decisions: invest enough to make the berth_occupancy < allowable_berth_occupancy

	
	adding jettys decreases berth_occupancy_rate

	
calculate_berth_occupancy(year, smallhydrogen_calls, largehydrogen_calls, smallammonia_calls, largeammonia_calls, handysize_calls, panamax_calls, vlcc_calls, smallhydrogen_calls_planned, largehydrogen_calls_planned, smallammonia_calls_planned, largeammonia_calls_planned, handysize_calls_planned, panamax_calls_planned, vlcc_calls_planned)

	
	Find all cranes and sum their effective_capacity to get service_capacity

	Divide callsize_per_vessel by service_capacity and add mooring time to get total time at berth

	Occupancy is total_time_at_berth divided by operational hours

	
calculate_demurrage_cost(year)

	Find the demurrage cost per type of vessel and sum all demurrage cost

	
calculate_energy_cost(year)

	The energy cost of all different element are calculated.
1. At first find the consumption, capacity and working hours per element
2. Find the total energy price to multiply the consumption with the energy price

	
calculate_h2retrieval_occupancy(year, hydrogen_defaults_h2retrieval_data)

	
	Divide the throughput by the service rate to get the total hours in a year

	Occupancy is total_time_at_h2retrieval divided by operational hours

	
calculate_revenue(year, hydrogen_defaults_commodity_data)

	
	calculate the value of the total throughput in year (throughput * handling fee)

	
calculate_vessel_calls(year=2019)

	Calculate volumes to be transported and the number of vessel calls (both per vessel type and in total)

	
check_throughput_available(year)

	

	
demand_terminal_plot(width=0.1, alpha=0.6)

	

	
h2retrieval_invest(year, hydrogen_defaults_h2retrieval_data)

	current strategy is to add h2 retrieval as long as target h2 retrieval is not yet achieved
- find out how much h2 retrieval is online
- find out how much h2 retrieval is planned
- find out how much h2 retrieval is needed
- add h2 retrieval until target is reached

	
jetty_invest(year, nrofdolphins)

	* Decision recipe jetty: *
QSC: jetty_per_berth
problem evaluation: there is a problem if the jetty_per_berth < 1
investment decisions: invest enough to make the jetty_per_berth = 1

	adding jetty will increase jetty_per_berth

	jetty_wall.length must be long enough to accommodate largest expected vessel

	jetty_wall.depth must be deep enough to accommodate largest expected vessel

	jetty_wall.freeboard must be high enough to accommodate largest expected vessel

	
pipeline_hinter_invest(year)

	current strategy is to add pipeline as soon as a service trigger is achieved
- find out how much service capacity is online
- find out how much service capacity is planned
- find out how much service capacity is needed
- add service capacity until service_trigger is no longer exceeded

	
pipeline_jetty_invest(year)

	current strategy is to add pipeline as soon as a service trigger is achieved
- find out how much service capacity is online
- find out how much service capacity is planned
- find out how much service capacity is needed
- add service capacity until service_trigger is no longer exceeded

	
plant_occupancy_plot(width=0.3, alpha=0.6)

	Gather data from Terminal and plot which elements come online when

	
simulate()

	The ‘simulate’ method implements the terminal investment strategy for this terminal class.

This method automatically generates investment decisions, parametrically derived from overall demand trends and
a number of investment triggers.

Generic approaches based on:
- Van Koningsveld, M. (Ed.), Verheij, H., Taneja, P. and De Vriend, H.J. (2020). Ports and Waterways.

Navigating the changing world. TU Delft, Delft, The Netherlands.

	Van Koningsveld, M. and J. P. M. Mulder. 2004. Sustainable Coastal Policy Developments in the
Netherlands. A Systematic Approach Revealed. Journal of Coastal Research 20(2), pp. 375-385

Specific application based on:
- Ijzermans, W., 2019. Terminal design optimization. Adaptive agribulk terminal planning

in light of an uncertain future. Master’s thesis. Delft University of Technology, Netherlands.
URL: http://resolver.tudelft.nl/uuid:7ad9be30-7d0a-4ece-a7dc-eb861ae5df24.

The simulate method applies frame of reference style decisions while stepping through each year of the terminal
lifecycle and check if investment is needed (in light of strategic objective, operational objective,
QSC, decision recipe, intervention method):

	for each year estimate the anticipated vessel arrivals based on the expected demand

	for each year evaluate which investment are needed given the strategic and operational objectives

	for each year calculate the energy costs (requires insight in realized demands)

	for each year calculate the demurrage costs (requires insight in realized demands)

	for each year calculate terminal revenues (requires insight in realized demands)

	for each year calculate the throughput (requires insight in realized demands) 6. for each year calculate terminal throughputequires insight in realized demands)

	collect all cash flows (capex, opex, revenues)

	calculate PV’s and aggregate to NPV

	
storage_invest(year, hydrogen_defaults_storage_data)

	current strategy is to add storage as long as target storage is not yet achieved
- find out how much storage is online
- find out how much storage is planned
- find out how much storage is needed
- add storage until target is reached

	
terminal_elements_plot(width=0.1, alpha=0.6, fontsize=20)

	Gather data from Terminal and plot which elements come online when

	
terminal_occupancy_plot(width=0.3, alpha=0.6)

	Gather data from Terminal and plot which elements come online when

	
throughput_elements(year)

	
	Find which elements are important and needs to be included

	Find from each element the online capacity

	Find where the lowest value is present, in the capacity or in the demand

Module contents

Top-level package for OpenTISim.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/TUDelft-CITG/OpenTISim/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

OpenClim could always use more documentation, whether as part of the
official OpenCLSim docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/TUDelft-CITG/OpenTISim/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up OpenTISim for local development.

	Fork the OpenTISim repository on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/OpenTISim.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv opentisim
$ cd opentisim/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 opentisim tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	The style of OpenTISim is according to Black. Format your code using
Black witht the following lines of code:

$ black opentisim
$ black tests

You can install black using pip.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.4, 3.5 and 3.6, and for PyPy. Check
CircleCI and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_opentisim

To make the documentation pages
$ make docs # for linux/osx

For windows
$ del docsopentisim.rst
$ del docsmodules.rst
$ sphinx-apidoc -o docs/ opentisim
$ cd docs
$ make html
$ start explorer _buildhtmlindex.html

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Mark van Koningsveld [https://www.tudelft.nl/citg/over-faculteit/afdelingen/hydraulic-engineering/sections/rivers-ports-waterways-and-dredging-engineering/staff/van-koningsveld-m/]

Contributors

Various MSc projects

	Wijnand Ijzermans [http://resolver.tudelft.nl/uuid:7ad9be30-7d0a-4ece-a7dc-eb861ae5df24], 2019. Terminal design optimization. Adaptive agribulk terminal planning in light of an uncertain future. MSc thesis. Delft University of Technology, Civil Engineering and Geosciences, Hydraulic Engineering - Ports and Waterways. Delft, the Netherlands.

	Stephanie Lanphen [http://resolver.tudelft.nl/uuid:d2429b05-1881-4e42-9bb3-ed604bc15255], 2019. Hydrogen import terminal. Elaborating the supply chains of a hydrogen import terminal, and its corresponding investment decisions. MSc thesis. Delft University of Technology, Civil Engineering and Geosciences, Hydraulic Engineering - Ports and Waterways. Delft, the Netherlands.

	Piebe Koster [http://resolver.tudelft.nl/uuid:131133bf-9021-4d67-afcb-233bd8302ce0], 2019. Optimisation of concept level container terminal design. Accelerate the generation and visualisation of the terminal design to reduce the probability of a sub-optimal solution. MSc thesis. Delft University of Technology, Civil Engineering and Geosciences, Hydraulic Engineering - Ports and Waterways. Delft, the Netherlands.

Ongoing MSc work

	Hugo Stam [https://repository.tudelft.nl], 2019. Logistical optimisation of offshore onshore port systems from a economic perspective. MSc thesis. Delft University of Technology, Civil Engineering and Geosciences, Environmental Fluid Mechanics. Delft, the Netherlands.

History

v0.6.2 (2020-03-09)

	Updated the container code (minor bugs fixed)

v0.6.1 (2020-03-09)

	Updated the container code with vessel classes

v0.6.0 (2020-02-14)

	Updated the container code and example

v0.5.0 (2020-01-24)

	Updated the agribulk code and example

v0.4.0 (2019-07-18)

	Renamed and first release to PyPi

v0.3.0 (2019-07-10)

	Merged multiple terminal types to the master

v0.2.0 (2019-04-06)

	Working version of redesigned code

v0.1.0 (2019-02-18)

	Final version MSc project Wijnand IJzermans

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 opentisim	

 	
 	
 opentisim.agribulk_defaults	

 	
 	
 opentisim.agribulk_mixins	

 	
 	
 opentisim.agribulk_objects	

 	
 	
 opentisim.agribulk_system	

 	
 	
 opentisim.container_defaults	

 	
 	
 opentisim.container_mixins	

 	
 	
 opentisim.container_objects	

 	
 	
 opentisim.container_system	

 	
 	
 opentisim.hydrogen_defaults	

 	
 	
 opentisim.hydrogen_mixins	

 	
 	
 opentisim.hydrogen_objects	

 	
 	
 opentisim.hydrogen_system	

Index

 B
 | C
 | D
 | E
 | G
 | H
 | I
 | J
 | L
 | O
 | P
 | Q
 | S
 | T
 | U
 | V

B

 	
 	Berth (class in opentisim.agribulk_objects)

 	(class in opentisim.container_objects)

 	(class in opentisim.hydrogen_objects)

 	berth_invest() (opentisim.agribulk_system.System method)

 	(opentisim.container_system.System method)

 	(opentisim.hydrogen_system.System method)

 	
 	berth_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.container_mixins)

 	(class in opentisim.hydrogen_mixins)

 	box_moves() (opentisim.container_system.System method)

C

 	
 	calculate_berth_occupancy() (opentisim.agribulk_system.System method)

 	(opentisim.container_system.System method)

 	(opentisim.hydrogen_system.System method)

 	calculate_demurrage_cost() (opentisim.agribulk_system.System method)

 	(opentisim.container_system.System method)

 	(opentisim.hydrogen_system.System method)

 	calculate_energy_cost() (opentisim.agribulk_system.System method)

 	(opentisim.container_system.System method)

 	(opentisim.hydrogen_system.System method)

 	calculate_fuel_cost() (opentisim.container_system.System method)

 	calculate_gate_minutes() (opentisim.container_system.System method)

 	calculate_general_labour_cost() (opentisim.container_system.System method)

 	calculate_h2retrieval_occupancy() (opentisim.hydrogen_system.System method)

 	calculate_indirect_costs() (opentisim.container_system.System method)

 	calculate_land_use() (opentisim.container_system.System method)

 	calculate_revenue() (opentisim.agribulk_system.System method)

 	(opentisim.hydrogen_system.System method)

 	calculate_station_occupancy() (opentisim.agribulk_system.System method)

 	calculate_throughput() (opentisim.container_system.System method)

 	calculate_vessel_calls() (opentisim.agribulk_system.System method)

 	(opentisim.container_system.System method)

 	(opentisim.hydrogen_system.System method)

 	check_crane_slot_available() (opentisim.agribulk_system.System method)

 	(opentisim.container_system.System method)

 	
 	check_throughput_available() (opentisim.hydrogen_system.System method)

 	Commodity (class in opentisim.agribulk_objects)

 	(class in opentisim.container_objects)

 	(class in opentisim.hydrogen_objects)

 	commodity_MCH_data (in module opentisim.hydrogen_defaults)

 	commodity_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.container_mixins)

 	(class in opentisim.hydrogen_mixins)

 	Container (class in opentisim.container_objects)

 	container_properties_mixin (class in opentisim.container_mixins)

 	continuous_properties_mixin (class in opentisim.agribulk_mixins)

 	Continuous_Unloader (class in opentisim.agribulk_objects)

 	Conveyor_Hinter (class in opentisim.agribulk_objects)

 	conveyor_hinter_invest() (opentisim.agribulk_system.System method)

 	conveyor_properties_mixin (class in opentisim.agribulk_mixins)

 	Conveyor_Quay (class in opentisim.agribulk_objects)

 	conveyor_quay_invest() (opentisim.agribulk_system.System method)

 	crane_invest() (opentisim.agribulk_system.System method)

 	(opentisim.container_system.System method)

 	cyclic_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.container_mixins)

 	Cyclic_Unloader (class in opentisim.agribulk_objects)

 	(class in opentisim.container_objects)

D

 	
 	demand_terminal_plot() (opentisim.hydrogen_system.System method)

E

 	
 	Empty_Handler (class in opentisim.container_objects)

 	empty_handler_invest() (opentisim.container_system.System method)

 	empty_handler_properties_mixin (class in opentisim.container_mixins)

 	Empty_Stack (class in opentisim.container_objects)

 	empty_stack_capacity() (opentisim.container_system.System method)

 	empty_stack_invest() (opentisim.container_system.System method)

 	
 	empty_stack_properties_mixin (class in opentisim.container_mixins)

 	Energy (class in opentisim.agribulk_objects)

 	(class in opentisim.container_objects)

 	(class in opentisim.hydrogen_objects)

 	energy_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.container_mixins)

 	(class in opentisim.hydrogen_mixins)

G

 	
 	Gate (class in opentisim.container_objects)

 	gate_invest() (opentisim.container_system.System method)

 	gate_properties_mixin (class in opentisim.container_mixins)

 	
 	General_Services (class in opentisim.container_objects)

 	general_services_invest() (opentisim.container_system.System method)

 	general_services_mixin (class in opentisim.container_mixins)

H

 	
 	H2retrieval (class in opentisim.hydrogen_objects)

 	H2retrieval_capacity_plot() (opentisim.hydrogen_system.System method)

 	h2retrieval_invest() (opentisim.hydrogen_system.System method)

 	h2retrieval_lh2_data (in module opentisim.hydrogen_defaults)

 	h2retrieval_nh3_data (in module opentisim.hydrogen_defaults)

 	h2retrieval_properties_mixin (class in opentisim.hydrogen_mixins)

 	hascapex_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.container_mixins)

 	(class in opentisim.hydrogen_mixins)

 	hasland_properties_mixin (class in opentisim.container_mixins)

 	hasopex_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.container_mixins)

 	(class in opentisim.hydrogen_mixins)

 	hasrevenue_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.container_mixins)

 	(class in opentisim.hydrogen_mixins)

 	
 	hasscenario_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.container_mixins)

 	(class in opentisim.hydrogen_mixins)

 	hastriggers_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.container_mixins)

 	(class in opentisim.hydrogen_mixins)

 	hinterland_pipeline_data (in module opentisim.hydrogen_defaults)

 	history_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.container_mixins)

 	(class in opentisim.hydrogen_mixins)

 	Horizontal_Transport (class in opentisim.container_objects)

 	horizontal_transport_invest() (opentisim.container_system.System method)

I

 	
 	identifiable_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.container_mixins)

 	(class in opentisim.hydrogen_mixins)

 	
 	Indirect_Costs (in module opentisim.container_objects)

 	indirect_costs_mixin (class in opentisim.container_mixins)

J

 	
 	Jetty (class in opentisim.hydrogen_objects)

 	Jetty_capacity_plot() (opentisim.hydrogen_system.System method)

 	
 	jetty_invest() (opentisim.hydrogen_system.System method)

 	jetty_properties_mixin (class in opentisim.hydrogen_mixins)

L

 	
 	Labour (class in opentisim.agribulk_objects)

 	(class in opentisim.container_objects)

 	(class in opentisim.hydrogen_objects)

 	labour_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.container_mixins)

 	(class in opentisim.hydrogen_mixins)

 	laden_reefer_stack_capacity() (opentisim.container_system.System method)

 	laden_reefer_stack_invest() (opentisim.container_system.System method)

 	
 	Laden_Stack (class in opentisim.container_objects)

 	laden_stack_area_plot() (opentisim.container_system.System method)

 	laden_stack_properties_mixin (class in opentisim.container_mixins)

 	Land_Price (in module opentisim.container_objects)

 	land_price_mixin (class in opentisim.container_mixins)

 	land_use_plot() (opentisim.container_system.System method)

 	largeammonia_data (in module opentisim.hydrogen_defaults)

 	largehydrogen_data (in module opentisim.hydrogen_defaults)

O

 	
 	OOG_Stack (class in opentisim.container_objects)

 	oog_stack_capacity() (opentisim.container_system.System method)

 	oog_stack_invest() (opentisim.container_system.System method)

 	oog_stack_properties_mixin (class in opentisim.container_mixins)

 	opentisim (module)

 	opentisim.agribulk_defaults (module)

 	opentisim.agribulk_mixins (module)

 	opentisim.agribulk_objects (module)

 	opentisim.agribulk_system (module)

 	
 	opentisim.container_defaults (module)

 	opentisim.container_mixins (module)

 	opentisim.container_objects (module)

 	opentisim.container_system (module)

 	opentisim.hydrogen_defaults (module)

 	opentisim.hydrogen_mixins (module)

 	opentisim.hydrogen_objects (module)

 	opentisim.hydrogen_system (module)

 	opex_plot() (opentisim.container_system.System method)

P

 	
 	Pipeline1_capacity_plot() (opentisim.hydrogen_system.System method)

 	Pipeline2_capacity_plot() (opentisim.hydrogen_system.System method)

 	Pipeline_Hinter (class in opentisim.hydrogen_objects)

 	pipeline_hinter_invest() (opentisim.hydrogen_system.System method)

 	Pipeline_Jetty (class in opentisim.hydrogen_objects)

 	
 	pipeline_jetty_invest() (opentisim.hydrogen_system.System method)

 	pipeline_properties_mixin (class in opentisim.hydrogen_mixins)

 	plant_occupancy_plot() (opentisim.hydrogen_system.System method)

 	plot_demand() (opentisim.agribulk_mixins.hasscenario_properties_mixin method)

 	(opentisim.container_mixins.hasscenario_properties_mixin method)

 	(opentisim.hydrogen_mixins.hasscenario_properties_mixin method)

Q

 	
 	quay_invest() (opentisim.agribulk_system.System method)

 	(opentisim.container_system.System method)

 	Quay_wall (class in opentisim.agribulk_objects)

 	(class in opentisim.container_objects)

 	
 	quay_wall_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.container_mixins)

S

 	
 	scenario_random() (opentisim.agribulk_mixins.hasscenario_properties_mixin method)

 	(opentisim.container_mixins.hasscenario_properties_mixin method)

 	(opentisim.hydrogen_mixins.hasscenario_properties_mixin method)

 	simulate() (opentisim.agribulk_system.System method)

 	(opentisim.container_system.System method)

 	(opentisim.hydrogen_system.System method)

 	Stack_Equipment (class in opentisim.container_objects)

 	stack_equipment_invest() (opentisim.container_system.System method)

 	stack_equipment_properties_mixin (class in opentisim.container_mixins)

 	Storage (class in opentisim.agribulk_objects)

 	(class in opentisim.hydrogen_objects)

 	
 	Storage_capacity_plot() (opentisim.hydrogen_system.System method)

 	storage_invest() (opentisim.agribulk_system.System method)

 	(opentisim.hydrogen_system.System method)

 	storage_lh2_data (in module opentisim.hydrogen_defaults)

 	storage_MCH_data (in module opentisim.hydrogen_defaults)

 	storage_nh3_data (in module opentisim.hydrogen_defaults)

 	storage_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.hydrogen_mixins)

 	System (class in opentisim.agribulk_system)

 	(class in opentisim.container_system)

 	(class in opentisim.hydrogen_system)

T

 	
 	terminal_capacity_plot() (opentisim.agribulk_system.System method)

 	(opentisim.container_system.System method)

 	terminal_elements_plot() (opentisim.agribulk_system.System method)

 	(opentisim.container_system.System method)

 	(opentisim.hydrogen_system.System method)

 	terminal_occupancy_plot() (opentisim.hydrogen_system.System method)

 	throughput_box() (opentisim.container_system.System method)

 	
 	throughput_characteristics() (opentisim.container_system.System method)

 	throughput_elements() (opentisim.hydrogen_system.System method)

 	Train (class in opentisim.agribulk_objects)

 	(class in opentisim.hydrogen_objects)

 	train_call() (opentisim.agribulk_system.System method)

 	train_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.hydrogen_mixins)

 	transport_properties_mixin (class in opentisim.container_mixins)

U

 	
 	Unloading_station (class in opentisim.agribulk_objects)

 	
 	unloading_station_invest() (opentisim.agribulk_system.System method)

 	unloading_station_properties_mixin (class in opentisim.agribulk_mixins)

V

 	
 	Vessel (class in opentisim.agribulk_objects)

 	(class in opentisim.container_objects)

 	(class in opentisim.hydrogen_objects)

 	
 	vessel_properties_mixin (class in opentisim.agribulk_mixins)

 	(class in opentisim.container_mixins)

 	(class in opentisim.hydrogen_mixins)

Changelog

Version 0.6.2

	Updated the container code (minor bugs fixed)

Version 0.6.1

	Updated the container code with vessel classes

Version 0.6.0

	Updated container code

Version 0.5.0

	Updated agribulk code

License

The MIT License (MIT)

Copyright (c) 2018 TUDelft / CITG-Ports and Waterways

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 _static/comment-bright.png

_static/OpenTISim.png
NS
Openl|Sim

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Open source Terminal Investment Simulation

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 OpenTISim

 		
 Submodules

 		
 opentisim.agribulk_defaults module

 		
 opentisim.agribulk_mixins module

 		
 opentisim.agribulk_objects module

 		
 opentisim.agribulk_system module

 		
 opentisim.container_defaults module

 		
 opentisim.container_mixins module

 		
 opentisim.container_objects module

 		
 opentisim.container_system module

 		
 opentisim.hydrogen_defaults module

 		
 opentisim.hydrogen_mixins module

 		
 opentisim.hydrogen_objects module

 		
 opentisim.hydrogen_system module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 v0.6.2 (2020-03-09)

 		
 v0.6.1 (2020-03-09)

 		
 v0.6.0 (2020-02-14)

 		
 v0.5.0 (2020-01-24)

 		
 v0.4.0 (2019-07-18)

 		
 v0.3.0 (2019-07-10)

 		
 v0.2.0 (2019-04-06)

 		
 v0.1.0 (2019-02-18)

_static/up-pressed.png

_static/up.png

_static/plus.png

